First Author | Ishii M | Year | 2007 |
Journal | Development | Volume | 134 |
Issue | 3 | Pages | 449-54 |
PubMed ID | 17185318 | Mgi Jnum | J:135064 |
Mgi Id | MGI:3790305 | Doi | 10.1242/dev.02751 |
Citation | Ishii M, et al. (2007) Potency of testicular somatic environment to support spermatogenesis in XX/Sry transgenic male mice. Development 134(3):449-54 |
abstractText | The sex-determining region of Chr Y (Sry) gene is sufficient to induce testis formation and the subsequent male development of internal and external genitalia in chromosomally female mice and humans. In XX sex-reversed males, such as XX/Sry-transgenic (XX/Sry) mice, however, testicular germ cells always disappear soon after birth because of germ cell-autonomous defects. Therefore, it remains unclear whether or not Sry alone is sufficient to induce a fully functional testicular soma capable of supporting complete spermatogenesis in the XX body. Here, we demonstrate that the testicular somatic environment of XX/Sry males is defective in supporting the later phases of spermatogenesis. Spermatogonial transplantation analyses using XX/Sry male mice revealed that donor XY spermatogonia are capable of proliferating, of entering meiosis and of differentiating to the round-spermatid stage. XY-donor-derived round spermatids, however, were frequently detached from the XX/Sry seminiferous epithelia and underwent cell death, resulting in severe deficiency of elongated spermatid stages. By contrast, immature XY seminiferous tubule segments transplanted under XX/Sry testis capsules clearly displayed proper differentiation into elongated spermatids in the transplanted XY-donor tubules. Microarray analysis of seminiferous tubules isolated from XX/Sry testes confirmed the missing expression of several Y-linked genes and the alterations in the expression profile of genes associated with spermiogenesis. Therefore, our findings indicate dysfunction of the somatic tubule components, probably Sertoli cells, of XX/Sry testes, highlighting the idea that Sry alone is insufficient to induce a fully functional Sertoli cell in XX mice. |