|  Help  |  About  |  Contact Us

Publication : Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice.

First Author  Liang Y Year  2001
Journal  Int J Obes Relat Metab Disord Volume  25
Issue  5 Pages  698-704
PubMed ID  11360153 Mgi Jnum  J:69134
Mgi Id  MGI:1934090 Doi  10.1038/sj.ijo.0801614
Citation  Liang Y, et al. (2001) Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Int J Obes Relat Metab Disord 25(5):698-704
abstractText  OBJECTIVE:: Several studies have implicated increased sympathetic tone as a contributing factor to the hyperglycemia and hyperglucagonemia of ob/ob mice. However, the responsiveness of plasma glucose, insulin and glucagon to circulating norepinephrine (NE) in ob/ob vs normal lean mice has never been described. Therefore, the present study investigated the effect of a 15 min intravenous NE infusion (1 pmol/min/g) on plasma glucose, insulin and glucagon in anesthetized lean, ob/ob, ob/ob-concurrent yohimbine (alpha(2) antagonist) treated, and ob/ob-chronically sympatholytic dopamine agonist treated (for 14 days prior to infusion) mice. In an effort to gain insight into a possible relation between norepinephrine, hyperglucagonemia and hyperinsulinemia in ob/ob mice, this study also examined the isolated islet responses to NE and glucagon in lean, ob/ob and ob/ob-sympatholytic dopamine agonist treated mice. RESULTS:: Basal humoral values of glucose, insulin and glucagon were all elevated in ob/ob vs lean mice (by 63, 1900 and 63%, respectively, P<0.01). However, NE infusion further increased levels of glucose, insulin and glucagon in ob/ob (by 80, 90 and 60%, respectively, P<0.05) but not in lean mice (between group difference for all parameters P<0.05). Acute concurrent yohimbine treatment as well as chronic prior sympatholytic dopamine agonist treatment (bromocriptine plus SKF38393) simultaneously strongly aborgated or abolished all these humoral hypersensitivity responses to intravenous NE in ob/ob mice (P<0.05). Clamping the plasma glucose level in untreated ob/ob mice at a high level (30 mM) established by NE infusion did not significantly alter the plasma insulin level, suggesting that some other influence of NE was responsible for this insulin effect. Direct NE administration at 1 &mgr;M to islets from lean and ob/ob mice inhibited 15 mM glucose-stimulated insulin secretion in both groups, but at 0.1 &mgr;M it was inhibitory only in islets from ob/ob mice. However, glucagon (10 nM) increased 15 mM glucose-stimulated insulin secretion in ob/ob (by 170%, P<0.05) but not lean mice (between group difference P<0.05). CONCLUSION:: These findings suggest that hypersensitivity to circulating NE may potentiate hyperglycemia and hyperglucagonemia in ob/ob mice, and the subsequent hyperglucagonemia coupled with increased islet beta-cell insulin secretory responsiveness to glucagon in ob/ob mice may support hyperinsulinemia, thus explaining the increased plasma insulin level response to intravenous NE in these animals. These findings further support a role for increased peripheral noradrenergic activities in the development and maintenance of the hyperglycemic, hyperglucagonemic and hyperinsulinemic state, characteristic of type 2 diabetes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

3 Bio Entities

Trail: Publication

0 Expression