|  Help  |  About  |  Contact Us

Publication : Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity.

First Author  Ishii M Year  2003
Journal  Proc Natl Acad Sci U S A Volume  100
Issue  18 Pages  10540-5
PubMed ID  12925742 Mgi Jnum  J:94820
Mgi Id  MGI:3521560 Doi  10.1073/pnas.1334189100
Citation  Ishii M, et al. (2003) Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. Proc Natl Acad Sci U S A 100(18):10540-5
abstractText  Gold-thioglucose (GTG) induces lesions in the ventromedial nucleus of the hypothalamus, resulting in hyperphagia and obesity. To identify genes involved in the hypothalamic regulation of energy homeostasis, we used a screen for genes that are dysregulated in GTG-induced obese mice. We found that GPR7, the endogenous G protein-coupled receptor for the recently identified ligands neuropeptide B and neuropeptide W, was down-regulated in hypothalamus after GTG treatment. Here we show that male GPR7-/- mice develop an adult-onset obese phenotype that progressively worsens with age and was greatly exacerbated when animals are fed a high-fat diet. GPR7-/- male mice were hyperphagic and had decreased energy expenditure and locomotor activity. Plasma levels of glucose, leptin, and insulin were also elevated in these mice. GPR7-/- male mice had decreased hypothalamic neuropeptide Y RNA levels and increased proopiomelanocortin RNA levels, a set of effects opposite to those evident in ob/ob mice. Furthermore, ob/ob GPR7-/- and Ay/a GPR7-/- double mutant male mice had an increased body weight compared with normal ob/ob or Ay/a male mice, suggesting that the obesity of GPR7-/- mice is independent of leptin and melanocortin signaling. Female mice did not show any significant weight increase or associated metabolic defects. These data suggest a potential role for GPR7 and its endogenous ligands, neuropeptide B and neuropeptide W, in regulating energy homeostasis independent of leptin and melanocortin signaling in a sexually dimorphic manner.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

10 Bio Entities

Trail: Publication

0 Expression