|  Help  |  About  |  Contact Us

Publication : Lack of guanylyl cyclase C, the receptor for Escherichia coli heat-stable enterotoxin, results in reduced polyp formation and increased apoptosis in the multiple intestinal neoplasia (Min) mouse model.

First Author  Mann EA Year  2005
Journal  Int J Cancer Volume  116
Issue  4 Pages  500-5
PubMed ID  15825168 Mgi Jnum  J:99670
Mgi Id  MGI:3583418 Doi  10.1002/ijc.21119
Citation  Mann EA, et al. (2005) Lack of guanylyl cyclase C, the receptor for Escherichia coli heat-stable enterotoxin, results in reduced polyp formation and increased apoptosis in the multiple intestinal neoplasia (Min) mouse model. Int J Cancer 116(4):500-5
abstractText  Guanylyl cyclase C (GC-C), a transmembrane receptor for bacterial heat-stable enterotoxin and the mammalian peptides guanylin and uroguanylin, mediates intestinal ion secretion and affects intestinal cell growth via cyclic GMP signaling. In intestinal tumors, GC-C expression is maintained while guanylin and uroguanylin expression is lost, suggesting a role for GC-C activation in tumor formation or growth. We show by in situ hybridization that GC-C expression is retained in adenomas from multiple intestinal neoplasia (Apc(Min/+)) mice. In order to determine the in vivo role of GC-C in intestinal tumorigenesis, we generated Apc(Min/+) mice homozygous for a targeted deletion of the gene encoding GC-C and hypothesized that these mice would have increased tumor multiplicity and size compared to wild-type Apc(Min/+) mice on the same genetic background. In contrast, the absence of GC-C resulted in a reduction of median polyp number by 55%. There was no change in the median diameter of polyps, suggesting no effect on tumor growth. Somatic loss of the wild-type Apc allele, an initiating event in intestinal tumorigenesis, also occurred in polyps from GC-C-deficient Apc(Min/+) mice. We have found increased levels of apoptosis as well as increased caspase-3 and caspase-7 gene expression in the intestines of GC-C-deficient Apc(Min/+) mice compared with Apc(Min/+) mice. We propose that these alterations are a possible compensatory mechanism by which loss of GC-C signaling also affects tumorigenesis. Published 2005 Wiley-Liss, Inc.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression