|  Help  |  About  |  Contact Us

Publication : Dystrophin deficiency disrupts muscle clock expression and mitochondrial quality control in <i>mdx</i> mice.

First Author  Hardee JP Year  2021
Journal  Am J Physiol Cell Physiol Volume  321
Issue  2 Pages  C288-C296
PubMed ID  34191629 Mgi Jnum  J:310502
Mgi Id  MGI:6720945 Doi  10.1152/ajpcell.00188.2021
Citation  Hardee JP, et al. (2021) Dystrophin deficiency disrupts muscle clock expression and mitochondrial quality control in mdx mice. Am J Physiol Cell Physiol
abstractText  Impaired oxidative capacity and mitochondrial function contribute to the dystrophic pathology in muscles of Duchenne muscular dystrophy (DMD) patients and in relevant mouse models of the disease. Emerging evidence suggests an association between disrupted core clock expression and mitochondrial quality control, but this has not been established in muscles lacking dystrophin. We examined the diurnal regulation of muscle core clock and mitochondrial quality control expression in dystrophin-deficient C57BL/10ScSn-Dmd(mdx) (mdx) mice, an established model of DMD. Male C57BL/10 (BL/10; n=18) and mdx mice (n=18) were examined every 4 hours beginning at the dark cycle. Throughout the entire light-dark cycle, extensor digitorum longus (EDL) muscles from mdx mice had decreased core clock mRNA expression (Arntl, Cry1, Cry2, Nr1d2; p<0.05) and disrupted mitochondrial quality control mRNA expression related to biogenesis (decreased; Ppargc1a, Esrra; p<0.05), fission (increased; Dnm1l; p<0.01), fusion (decreased; Opa1, Mfn1; p<0.05) and autophagy/mitophagy (decreased: Bnip3; p<0.05; increased: Becn1; p<0.05). Cosinor analysis revealed a decrease in the rhythmicity parameters mesor and amplitude for Arntl, Cry1, Cry2, Per2, and Nr1d1 (p<0.001) in mdx mice. Diurnal oscillations in Esrra, Sirt1, Map1lc3b and Sqstm1 were absent in mdx mice, along with decreased mesor and amplitude of Ppargc1a mRNA expression (p<0.01). The expression of proteins involved in mitochondrial biogenesis (decreased: PPARGC1A, p<0.05) and autophagy/mitophagy (increased: MAP1LC3BII, SQSTM1, BNIP3; p<0.05) were also dysregulated in tibialis anterior muscles of mdx mice. These findings suggest that dystrophin deficiency in mdx mice impairs the regulation of the core clock and mitochondrial quality control, with relevance to DMD and related disorders.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression