|  Help  |  About  |  Contact Us

Publication : Genetic inhibition of PKA phosphorylation of RyR2 prevents dystrophic cardiomyopathy.

First Author  Sarma S Year  2010
Journal  Proc Natl Acad Sci U S A Volume  107
Issue  29 Pages  13165-70
PubMed ID  20615971 Mgi Jnum  J:272210
Mgi Id  MGI:6281239 Doi  10.1073/pnas.1004509107
Citation  Sarma S, et al. (2010) Genetic inhibition of PKA phosphorylation of RyR2 prevents dystrophic cardiomyopathy. Proc Natl Acad Sci U S A 107(29):13165-70
abstractText  Aberrant intracellular Ca(2+) regulation is believed to contribute to the development of cardiomyopathy in Duchenne muscular dystrophy. Here, we tested whether inhibition of protein kinase A (PKA) phosphorylation of ryanodine receptor type 2 (RyR2) prevents dystrophic cardiomyopathy by reducing SR Ca(2+) leak in the mdx mouse model of Duchenne muscular dystrophy. mdx mice were crossed with RyR2-S2808A mice, in which PKA phosphorylation site S2808 on RyR2 is inactivated by alanine substitution. Compared with mdx mice that developed age-dependent heart failure, mdx-S2808A mice exhibited improved fractional shortening and reduced cardiac dilation. Whereas application of isoproterenol severely depressed cardiac contractility and caused 95% mortality in mdx mice, contractility was preserved with only 19% mortality in mdx-S2808A mice. SR Ca(2+) leak was greater in ventricular myocytes from mdx than mdx-S2808A mice. Myocytes from mdx mice had a higher incidence of isoproterenol-induced diastolic Ca(2+) release events than myocytes from mdx-S2808A mice. Thus, inhibition of PKA phosphorylation of RyR2 reduced SR Ca(2+) leak and attenuated cardiomyopathy in mdx mice, suggesting that enhanced PKA phosphorylation of RyR2 at S2808 contributes to abnormal Ca(2+) homeostasis associated with dystrophic cardiomyopathy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression