First Author | Kiriaev L | Year | 2022 |
Journal | Hum Mol Genet | Volume | 31 |
Issue | 9 | Pages | 1417-1429 |
PubMed ID | 34761268 | Mgi Jnum | J:328226 |
Mgi Id | MGI:7311873 | Doi | 10.1093/hmg/ddab326 |
Citation | Kiriaev L, et al. (2022) Loss of alpha-actinin-3 confers protection from eccentric contraction damage in fast-twitch EDL muscles from aged mdx dystrophic mice by reducing pathological fibre branching. Hum Mol Genet 31(9):1417-1429 |
abstractText | The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein alpha-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere alpha-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies. |