|  Help  |  About  |  Contact Us

Publication : Dissection of temporal gene expression signatures of affected and spared muscle groups in dystrophin-deficient (mdx) mice.

First Author  Porter JD Year  2003
Journal  Hum Mol Genet Volume  12
Issue  15 Pages  1813-21
PubMed ID  12874102 Mgi Jnum  J:356434
Mgi Id  MGI:7762526 Doi  10.1093/hmg/ddg197
Citation  Porter JD, et al. (2003) Dissection of temporal gene expression signatures of affected and spared muscle groups in dystrophin-deficient (mdx) mice. Hum Mol Genet 12(15):1813-21
abstractText  Although dystrophin mutations are the proximate cause of Duchenne muscular dystrophy (DMD), interactions among heterogeneous downstream mechanisms may be key phenotypic determinants. Temporal gene expression profiling was used to identify and correlate diverse transcriptional patterns to one another and to the disease course, for both affected and spared muscle groups, in postnatal day 7-112 dystrophin-deficient (mdx) mice. While 719 transcripts were differentially expressed at one or more ages in leg muscle, only 56 genes were altered in the spared extraocular muscles (EOM). Contrasting molecular signatures of affected versus spared muscles provide compelling evidence that the absence of dystrophin alone is necessary but not sufficient to cause the patterned fibrosis, inflammation and failure of muscle regeneration characteristic of dystrophinopathy. Dystrophic and adaptive changes in the microarray profiles were further quantified using an aggregate disease load index (DLI) to measure stage-dependent transcriptional impact in both muscles. DLI analysis highlighted the divergent responses of EOM and leg muscle groups. Cellular process-specific DLIs in leg muscle identified positively correlated temporal expression profiles for some gene classes, and the independence of others, that are linked to major disease components. Data also showed a previously unrecognized transient and selective developmental delay in pre-necrotic mdx skeletal muscle that was confirmed by qPCR. Taken together, validation and targeting of signaling pathways responsible for the coordination of the fibrotic, proteolytic and inflammatory mechanisms shown here for mdx muscle may yield new therapeutic means of mitigating the devastating consequences of DMD.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression