First Author | Lamhonwah AM | Year | 2020 |
Journal | Clin Chim Acta | Volume | 505 |
Pages | 92-97 | PubMed ID | 32070725 |
Mgi Jnum | J:289942 | Mgi Id | MGI:6435234 |
Doi | 10.1016/j.cca.2020.02.015 | Citation | Lamhonwah AM, et al. (2020) Expression of the organic cation/carnitine transporter family (Octn1,-2 and-3) in mdx muscle and heart: Implications for early carnitine therapy in Duchenne muscular dystrophy to improve cellular carnitine homeostasis. Clin Chim Acta 505:92-97 |
abstractText | INTRODUCTION: Carnitine is essential for long-chain fatty acid oxidation in muscle and heart. Tissue stores are regulated by organic cation/Cn transporter plasmalemmal Octn2. We previously demonstrated low carnitine in quadriceps/gluteus and heart of adult mdx mice. METHODS: We studied protein and mRNA expression of Octn2, mitochondrial Octn1 and peroxisomal Octn3 in adult male C57BL/10ScSn-DMD mdx/J quadriceps, heart, and diaphragm compared to C57BL/10SnJ mice. RESULTS: We demonstrated reduction in mOctn2 expression on Western blot and similar expression of mOctn1 and mOctn3 in mdx quadriceps, heart and diaphragm. There was a significant upregulation of mOctn1 and mOctn2 mRNA by qRT-PCR in mdx quadriceps and of mOctn2 and mOctn3 mRNA in mdx heart. We showed upregulation of mdx mOctn1 and mOctn3 mRNA but no increase in protein expression. DISCUSSION: Dystrophin deficiency likely disrupts Octn2 expression decreasing muscle carnitine uptake thus contributing to membranotoxic long-chain acyl-CoAs with sarcolemmal and organellar membrane oxidative injury providing a treatment rationale for early L-carnitine in DMD. |