|  Help  |  About  |  Contact Us

Publication : Macrophage deficiency in osteopetrotic (op/op) mice inhibits activation of satellite cells and prevents hypertrophy in single soleus fibers.

First Author  Ohira T Year  2015
Journal  Am J Physiol Cell Physiol Volume  308
Issue  10 Pages  C848-55
PubMed ID  25788575 Mgi Jnum  J:224228
Mgi Id  MGI:5661758 Doi  10.1152/ajpcell.00348.2014
Citation  Ohira T, et al. (2015) Macrophage deficiency in osteopetrotic (op/op) mice inhibits activation of satellite cells and prevents hypertrophy in single soleus fibers. Am J Physiol Cell Physiol 308(10):C848-55
abstractText  Effects of macrophage on the responses of soleus fiber size to hind limb unloading and reloading were studied in osteopetrotic homozygous (op/op) mice with inactivated mutation of macrophage colony-stimulating factor (M-CSF) gene and in wild-type (+/+) and heterozygous (+/op) mice. The basal levels of mitotically active and quiescent satellite cell (-46 and -39% vs. +/+, and -40 and -30% vs. +/op) and myonuclear number (-29% vs. +/+ and -28% vs. +/op) in fibers of op/op mice were significantly less than controls. Fiber length and sarcomere number in op/op were also less than +/+ (-22%) and +/op (-21%) mice. Similar trend was noted in fiber cross-sectional area (CSA, -15% vs. +/+, P = 0.06, and -14% vs. +/op, P = 0.07). The sizes of myonuclear domain, cytoplasmic volume per myonucleus, were identical in all types of mice. The CSA, length, and the whole number of sarcomeres, myonuclei, and mitotically active and quiescent satellite cells, as well as myonuclear domain, in single muscle fibers were decreased after 10 days of unloading in all types of mice, although all of these parameters in +/+ and +/op mice were increased toward the control values after 10 days of reloading. However, none of these levels in op/op mice were recovered. Data suggest that M-CSF and/or macrophages are important to activate satellite cells, which cause increase of myonuclear number during fiber hypertrophy. However, it is unclear why their responses to general growth and reloading after unloading are different.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression