|  Help  |  About  |  Contact Us

Publication : Cellular Senescence Is Associated With Human Retinal Microaneurysm Formation During Aging.

First Author  López-Luppo M Year  2017
Journal  Invest Ophthalmol Vis Sci Volume  58
Issue  7 Pages  2832-2842
PubMed ID  28570738 Mgi Jnum  J:257592
Mgi Id  MGI:6112537 Doi  10.1167/iovs.16-20312
Citation  Lopez-Luppo M, et al. (2017) Cellular Senescence Is Associated With Human Retinal Microaneurysm Formation During Aging. Invest Ophthalmol Vis Sci 58(7):2832-2842
abstractText  Purpose: Microaneurysms are present in healthy old-age human retinas. However, to date, no age-related pathogenic mechanism has been implicated in their formation. Here, cellular senescence, a hallmark of aging and several age-related diseases, has been analyzed in the old-age human retina and in the retina of a progeric mouse. Methods: Retinas were obtained from 17 nondiabetic donors and from mice deficient in Bmi1. Cellular senescence was analyzed by immunohistochemistry, senescent-associated beta-galactosidase activity assay, Sudan black B staining, conventional transmission electron microscopy, and immunoelectronmicroscopy. Results: Neurons, but not neuroglia, and blood vessels undergo cellular senescence in the old-age human retina. The canonical senescence markers p16, p53, and p21 were up-regulated and coexisted with apoptosis in old-age human microaneurysms. Senescent endothelial cells were discontinuously covered by fibronectin, and p16 colocalized with the beta1 subunit of fibronectin receptor alpha5beta1 integrin under the endothelial cellular membrane, suggesting anoikis as a mechanism involved in endothelial cell apoptosis. In a progeric mouse model deficient in Bmi1, where p21 was overexpressed, the retinal blood vessels displayed an aging phenotype characterized by enlarged caveolae and lipofuscin accumulation. Although mouse retina is not prone to develop microaneurysms, Bmi1-deficient mice presented abundant retinal microaneurysms. Conclusions: Together, these results uncover cellular senescence as a player during the formation of microaneurysms in old-age human retinas.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression