|  Help  |  About  |  Contact Us

Publication : Abnormal laminar position and dendrite development of interneurons in the reeler forebrain.

First Author  Yabut O Year  2007
Journal  Brain Res Volume  1140
Pages  75-83 PubMed ID  16996039
Mgi Jnum  J:120183 Mgi Id  MGI:3704021
Doi  10.1016/j.brainres.2005.09.070 Citation  Yabut O, et al. (2007) Abnormal laminar position and dendrite development of interneurons in the reeler forebrain. Brain Res 1140:75-83
abstractText  The majority of cortical and hippocampal interneurons originate in the subcortical telencephalon and migrate tangentially into pallial regions before settling in various cortical layers. The molecular cues that regulate final positioning of specific interneurons in cortical structures have not yet been identified. The positioning of radially migrating principal neurons of the cortex and hippocampus depends upon Reelin, an extracellular protein expressed near the pial surface during embryonic development that is absent in reeler mutant mice. To determine whether the layer specification of interneurons, like that of principal neurons, requires Reelin, we crossed reeler with transgenic mice that contain Green Fluorescent Protein (GFP)-expressing Inhibitory Neurons (GINs). These neurons express basal forebrain markers Dlx1/2 in normal and reeler mice. In normal mice, GINs express Reelin and are localized to specific layers of the cortex and hippocampus. In reeler mutant mice, we show that GINs migrate normally into the pallium, but fail to acquire proper layer position. Double labeling experiments indicate that the neurochemical profile of these interneurons is not generally altered in reeler mice. However, the extension of their cellular processes is abnormal. Quantitative analysis of GINs in the cortex revealed that they are hypertrophic, bearing longer neuritic branches than normal. Thus, the lack of Reelin signaling results in abnormal positioning and altered morphology of forebrain interneurons.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression