|  Help  |  About  |  Contact Us

Publication : Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice.

First Author  Kobayashi M Year  2012
Journal  Biochem Biophys Res Commun Volume  427
Issue  2 Pages  299-304
PubMed ID  23000156 Mgi Jnum  J:260346
Mgi Id  MGI:6150599 Doi  10.1016/j.bbrc.2012.09.045
Citation  Kobayashi M, et al. (2012) Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice. Biochem Biophys Res Commun 427(2):299-304
abstractText  (-)-Ternatin is a highly methylated cyclic heptapeptide isolated from mushroom Coriolus versicolor. Ternatin has an inhibitory effect on fat accumulation in 3T3-L1 adipocytes. [D-Leu(7)]ternatin, a ternatin derivative, also inhibited fat accumulation in 3T3-L1 cells, although the effectiveness of [D-Leu(7)]ternatin was lower than that of ternatin. In this study, we investigated the effects of ternatin and [D-Leu(7)]ternatin on obesity and type 2 diabetes in KK-A(y) mice, an animal model for spontaneously developed type 2 diabetes. We continuously administered ternatin (8.5 or 17 nmol/day) or [D-Leu(7)]ternatin (68 nmol/day) to mice via a subcutaneous osmotic pump. Unexpectedly, neither ternatin nor [D-Leu(7)]ternatin affected body weight or adipose tissue weight in KK-A(y) mice. In contrast, it was demonstrated that both ternatin and [D-Leu(7)]ternatin suppress the development of hyperglycemia. In liver, the SREBP-1c mRNA level tended to be lower or significantly decreased in mice treated with ternatin or [D-Leu(7)]ternatin, respectively. Moreover, we found that ternatin directly lowered the SREBP-1c mRNA level in Hepa1-6 hepatocyte cells. This study showed that ternatin and [D-Leu(7)]ternatin each had a preventive effect on hyperglycemia and a suppressive effect on fatty acid synthesis in KK-A(y) mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression