|  Help  |  About  |  Contact Us

Publication : Failure of the feeding response to fasting in carnitine-deficient juvenile visceral steatosis (JVS) mice: involvement of defective acyl-ghrelin secretion and enhanced corticotropin-releasing factor signaling in the hypothalamus.

First Author  Sakoguchi T Year  2009
Journal  Biochim Biophys Acta Volume  1792
Issue  11 Pages  1087-93
PubMed ID  19744557 Mgi Jnum  J:164842
Mgi Id  MGI:4835385 Doi  10.1016/j.bbadis.2009.09.001
Citation  Sakoguchi T, et al. (2009) Failure of the feeding response to fasting in carnitine-deficient juvenile visceral steatosis (JVS) mice: involvement of defective acyl-ghrelin secretion and enhanced corticotropin-releasing factor signaling in the hypothalamus. Biochim Biophys Acta 1792(11):1087-93
abstractText  Carnitine-deficient juvenile visceral steatosis (JVS) mice, suffering from fatty acid metabolism abnormalities, have reduced locomotor activity after fasting. We examined whether JVS mice exhibit specific defect in the feeding response to fasting, a key process of anti-famine homeostatic mechanism. Carnitine-deficient JVS mice showed grossly defective feeding response to 24 h-fasting, with almost no food intake in the first 4 h, in marked contrast to control animals. JVS mice also showed defective acyl-ghrelin response to fasting, less suppressed leptin, and seemingly normal corticotropin-releasing factor (CRF) expression in the hypothalamus despite markedly increased plasma corticosterone. The anorectic response was ameliorated by intraperitoneal administration of carnitine or acyl-ghrelin, with decreased CRF expression. Intracerebroventricular treatment of CRF type 2 receptor antagonist, anti-sauvagine-30, recovered the defective feeding response of 24 h-fasted JVS mice. The defective feeding response to fasting in carnitine-deficient JVS mice is due to the defective acyl-ghrelin and enhanced CRF signaling in the hypothalamus through fatty acid metabolism abnormalities. In this animal model, carnitine normalizes the feeding response through an inhibition of CRF.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression