|  Help  |  About  |  Contact Us

Publication : Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin.

First Author  Powers K Year  2016
Journal  J Exp Biol Volume  219
Issue  Pt 9 Pages  1311-6
PubMed ID  26944495 Mgi Jnum  J:312159
Mgi Id  MGI:6783125 Doi  10.1242/jeb.132027
Citation  Powers K, et al. (2016) Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin. J Exp Biol 219(Pt 9):1311-6
abstractText  In the cross-bridge theory, contractile force is produced by cross-bridges that form between actin and myosin filaments. However, when a contracting muscle is stretched, its active force vastly exceeds the force that can be attributed to cross-bridges. This unexplained, enhanced force has been thought to originate in the giant protein titin, which becomes stiffer in actively compared with passively stretched sarcomeres by an unknown mechanism. We investigated this mechanism using a genetic mutation (mdm) with a small but crucial deletion in the titin protein. Myofibrils from normal and mdm mice were stretched from sarcomere lengths of 2.5 to 6.0 mum. Actively stretched myofibrils from normal mice were stiffer and generated more force than passively stretched myofibrils at all sarcomere lengths. No increase in stiffness and just a small increase in force were observed in actively compared with passively stretched mdm myofibrils. These results are in agreement with the idea that titin force enhancement stiffens and stabilizes the sarcomere during contraction and that this mechanism is lost with the mdm mutation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression