|  Help  |  About  |  Contact Us

Publication : Resistance of hypotransferrinemic mice to hyperoxia-induced lung injury.

First Author  Yang F Year  1999
Journal  Am J Physiol Volume  277
Issue  6 Pt 1 Pages  L1214-23
PubMed ID  10600893 Mgi Jnum  J:59064
Mgi Id  MGI:1350858 Doi  10.1152/ajplung.1999.277.6.L1214
Citation  Yang F, et al. (1999) Resistance of hypotransferrinemic mice to hyperoxia-induced lung injury. Am J Physiol 277(6 Pt 1):L1214-23
abstractText  Oxidative stress plays a central role in the pathogenesis of acute and chronic pulmonary diseases. Safe sequestration of iron, which participates in the formation of the hydroxyl radical, is crucial in the lung's defense. We used a mouse line defective in the major iron transport protein transferrin to investigate the effect of aberrant iron metabolism on the lung's defense against oxidative injury. The tolerance to hyperoxic lung injury was greater in the hypotransferrinemic than in wild-type mice as documented by histopathology and biochemical indexes for lung damage. There was no increase in the levels of intracellular antioxidants, inflammatory cytokines, and heme oxygenase-1 in the hypotransferrinemic mouse lung compared with those in wild-type mice. However, there were elevated expressions of ferritin and lactoferrin in the lung of hypotransferrinemic mice, especially in the alveolar macrophages. Our results suggest that pulmonary lactoferrin and ferritin protect animals against oxidative stress, most likely via their capacity to sequester iron, and that alveolar macrophages are the key participants in iron detoxification in the lower respiratory tract.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression