|  Help  |  About  |  Contact Us

Publication : Interplay of H2A deubiquitinase 2A-DUB/Mysm1 and the p19(ARF)/p53 axis in hematopoiesis, early T-cell development and tissue differentiation.

First Author  Gatzka M Year  2015
Journal  Cell Death Differ Volume  22
Issue  9 Pages  1451-62
PubMed ID  25613381 Mgi Jnum  J:232680
Mgi Id  MGI:5779788 Doi  10.1038/cdd.2014.231
Citation  Gatzka M, et al. (2015) Interplay of H2A deubiquitinase 2A-DUB/Mysm1 and the p19(ARF)/p53 axis in hematopoiesis, early T-cell development and tissue differentiation. Cell Death Differ 22(9):1451-62
abstractText  Monoubiquitination of core histone 2A (H2A-K119u) has a critical role in gene regulation in hematopoietic differentiation and other developmental processes. To explore the interplay of histone H2A deubiquitinase Myb-like SWIRM and MPN domain containing1 (2A-DUB/Mysm1) with the p53 axis in the sequential differentiation of mature lymphocytes from progenitors, we systematically analyzed hematopoiesis and early T-cell development using Mysm1(-/-) and p53(-/-)Mysm1(-/-) mice. Mysm1(-/-) thymi were severely hypoplastic with <10% of wild-type cell numbers as a result of a reduction of early thymocyte progenitors in context with defective hematopoietic stem cells, a partial block at the double-negative (DN)1-DN2 transition and increased apoptosis of double-positive thymocytes. Increased rates of apoptosis were also detected in other tissues affected by Mysm1 deficiency, including the developing brain and the skin. By quantitative PCR and chromatin immunoprecipitation analyses, we identified p19(ARF), an important regulator of p53 tumor suppressor protein levels, as a potential Mysm1 target gene. In newly generated p53(-/-)Mysm1(-/-) double-deficient mice, anomalies of Mysm1(-/-) mice including reduction of lymphoid-primed multipotent progenitors, reduced thymocyte numbers and viability, and interestingly defective B-cell development, growth retardation, neurological defects, skin atrophy, and tail malformation were almost completely restored as well, substantiating the involvement of the p53 pathway in the alterations caused by Mysm1 deficiency. In conclusion, this investigation uncovers a novel link between H2A deubiquitinase 2A-DUB/Mysm1 and suppression of p53-mediated apoptotic programs during early lymphoid development and other developmental processes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression