|  Help  |  About  |  Contact Us

Publication : Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis.

First Author  Behr B Year  2010
Journal  Dev Biol Volume  344
Issue  2 Pages  922-40
PubMed ID  20547147 Mgi Jnum  J:163650
Mgi Id  MGI:4822544 Doi  10.1016/j.ydbio.2010.06.009
Citation  Behr B, et al. (2010) Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol 344(2):922-40
abstractText  Premature closure of cranial sutures, which serve as growth centers for the skull vault, result in craniosynostosis. In the mouse posterior frontal (PF) suture closes by endochondral ossification, whereas sagittal (SAG) remain patent life time, although both are neural crest tissue derived. We therefore, investigated why cranial sutures of same tissue origin adopt a different fate. We demonstrated that closure of the PF suture is tightly regulated by canonical Wnt signaling, whereas patency of the SAG suture is achieved by constantly activated canonical Wnt signaling. Importantly, the fate of PF and SAG sutures can be reversed by manipulating Wnt signaling. Continuous activation of canonical Wnt signaling in the PF suture inhibits endochondral ossification and therefore, suture closure, In contrast, inhibition of canonical Wnt signaling in the SAG suture, upon treatment with Wnt antagonists results in endochondral ossification and suture closure. Thus, inhibition of canonical Wnt signaling in the SAG suture phenocopies craniosynostosis. Moreover, mice haploinsufficient for Twist1, a target gene of canonical Wnt signaling which inhibits chondrogenesis, have sagittal craniosynostosis. We propose that regulation of canonical Wnt signaling is of crucial importance during the physiological patterning of PF and SAG sutures. Importantly, dysregulation of this pathway may lead to craniosynostosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

9 Bio Entities

Trail: Publication

0 Expression