|  Help  |  About  |  Contact Us

Publication : Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue.

First Author  Roubtsova A Year  2011
Journal  Arterioscler Thromb Vasc Biol Volume  31
Issue  4 Pages  785-91
PubMed ID  21273557 Mgi Jnum  J:184166
Mgi Id  MGI:5320378 Doi  10.1161/ATVBAHA.110.220988
Citation  Roubtsova A, et al. (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31(4):785-91
abstractText  OBJECTIVE: Proprotein convertase subtilisin/kexin 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor (LDLR), and its gene is the third locus implicated in familial hypercholesterolemia. Herein, we investigated the role of PCSK9 in adipose tissue metabolism. METHODS AND RESULTS: At 6 months of age, Pcsk9(-/-) mice accumulated approximately 80% more visceral adipose tissue than wild-type mice. This was associated with adipocyte hypertrophy and increased in vivo fatty acid uptake and ex vivo triglyceride synthesis. Moreover, adipocyte hypertrophy was also observed in Pcsk9(-/-) Ldlr(-/-) mice, indicating that the LDLR is not implicated. Rather, we show here by immunohistochemistry that Pcsk9(-/-) males and females exhibit 4- and approximately 40-fold higher cell surface levels of very-low-density lipoprotein receptor (VLDLR) in perigonadal depots, respectively. Expression of PCSK9 in the liver of Pcsk9(-/-) females reestablished both circulating PCSK9 and normal VLDLR levels. In contrast, specific inactivation of PCSK9 in the liver of wild-type females led to approximately 50-fold higher levels of perigonadal VLDLR. CONCLUSIONS: In vivo, endogenous PCSK9 regulates VLDLR protein levels in adipose tissue. This regulation is achieved by circulating PCSK9 that originates entirely in the liver. PCSK9 is thus pivotal in fat metabolism: it maintains high circulating cholesterol levels via hepatic LDLR degradation, but it also limits visceral adipogenesis likely via adipose VLDLR regulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression