First Author | Roubtsova A | Year | 2011 |
Journal | Arterioscler Thromb Vasc Biol | Volume | 31 |
Issue | 4 | Pages | 785-91 |
PubMed ID | 21273557 | Mgi Jnum | J:184166 |
Mgi Id | MGI:5320378 | Doi | 10.1161/ATVBAHA.110.220988 |
Citation | Roubtsova A, et al. (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31(4):785-91 |
abstractText | OBJECTIVE: Proprotein convertase subtilisin/kexin 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor (LDLR), and its gene is the third locus implicated in familial hypercholesterolemia. Herein, we investigated the role of PCSK9 in adipose tissue metabolism. METHODS AND RESULTS: At 6 months of age, Pcsk9(-/-) mice accumulated approximately 80% more visceral adipose tissue than wild-type mice. This was associated with adipocyte hypertrophy and increased in vivo fatty acid uptake and ex vivo triglyceride synthesis. Moreover, adipocyte hypertrophy was also observed in Pcsk9(-/-) Ldlr(-/-) mice, indicating that the LDLR is not implicated. Rather, we show here by immunohistochemistry that Pcsk9(-/-) males and females exhibit 4- and approximately 40-fold higher cell surface levels of very-low-density lipoprotein receptor (VLDLR) in perigonadal depots, respectively. Expression of PCSK9 in the liver of Pcsk9(-/-) females reestablished both circulating PCSK9 and normal VLDLR levels. In contrast, specific inactivation of PCSK9 in the liver of wild-type females led to approximately 50-fold higher levels of perigonadal VLDLR. CONCLUSIONS: In vivo, endogenous PCSK9 regulates VLDLR protein levels in adipose tissue. This regulation is achieved by circulating PCSK9 that originates entirely in the liver. PCSK9 is thus pivotal in fat metabolism: it maintains high circulating cholesterol levels via hepatic LDLR degradation, but it also limits visceral adipogenesis likely via adipose VLDLR regulation. |