First Author | Fredriksson K | Year | 2014 |
Journal | J Immunol | Volume | 192 |
Issue | 10 | Pages | 4497-509 |
PubMed ID | 24733846 | Mgi Jnum | J:288740 |
Mgi Id | MGI:6430034 | Doi | 10.4049/jimmunol.1301234 |
Citation | Fredriksson K, et al. (2014) The very low density lipoprotein receptor attenuates house dust mite-induced airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Immunol 192(10):4497-509 |
abstractText | The very low density lipoprotein receptor (VLDLR) is a member of the low-density lipoprotein receptor family that binds multiple ligands and plays a key role in brain development. Although the VLDLR mediates pleiotropic biological processes, only a limited amount of information is available regarding its role in adaptive immunity. In this study, we identify an important role for the VLDLR in attenuating house dust mite (HDM)-induced airway inflammation in experimental murine asthma. We show that HDM-challenged Vldlr(-/-) mice have augmented eosinophilic and lymphocytic airway inflammation with increases in Th2 cytokines, C-C chemokines, IgE production, and mucous cell metaplasia. A genome-wide analysis of the lung transcriptome identified that mRNA levels of CD209e (DC-SIGNR4), a murine homolog of DC-SIGN, were increased in the lungs of HDM-challenged Vldlr(-/-) mice, which suggested that the VLDLR might modify dendritic cell (DC) function. Consistent with this, VLDLR expression by human monocyte-derived DCs was increased by HDM stimulation. In addition, 55% of peripheral blood CD11c(+) DCs from individuals with allergy expressed VLDLR under basal conditions. Lastly, the adoptive transfer of HDM-pulsed, CD11c(+) bone marrow-derived DCs (BMDCs) from Vldlr(-/-) mice to the airways of wild type recipient mice induced augmented eosinophilic and lymphocytic airway inflammation upon HDM challenge with increases in Th2 cytokines, C-C chemokines, IgE production, and mucous cell metaplasia, as compared with the adoptive transfer of HDM-pulsed, CD11c(+) BMDCs from wild type mice. Collectively, these results identify a novel role for the VLDLR as a negative regulator of DC-mediated adaptive immune responses in HDM-induced allergic airway inflammation. |