First Author | Greenberg RS | Year | 2006 |
Journal | FASEB J | Volume | 20 |
Issue | 7 | Pages | 1006-8 |
PubMed ID | 16585062 | Mgi Jnum | J:111499 |
Mgi Id | MGI:3654226 | Doi | 10.1096/fj.05-4838fje |
Citation | Greenberg RS, et al. (2006) FAK-dependent regulation of myofibroblast differentiation. FASEB J 20(7):1006-8 |
abstractText | Fibroblasts and myofibroblasts both participate in wound healing. Transforming growth factor beta (TGFbeta) induces fibroblasts to differentiate into myofibroblasts, whereas fibroblast growth factor and heparin (FGF/h) induce myofibroblasts to 'de-differentiate' into fibroblasts. TGFbeta induces expression of smooth muscle alpha actin (SMalphaA) and incorporation into in stress fibers, a phenotype of differentiated myofibroblasts. Additionally, TGFbeta induces the expression of fibronectin and fibronectin integrins. Fibronectin-generated signals contribute to the TGFbeta-mediated myofibroblast differentiation. Because fibronectin signals are transmitted through focal adhesion kinase (FAK), it was predicted that FAK would be essential to TGFbeta-mediated myofibroblast differentiation. To determine whether the FAK signaling pathway is required for myofibroblast differentiation, we used two approaches to decrease FAK in mouse embryo fibroblasts (MEFs): 1) FAK +/+ MEFs, in which FAK protein expression was greatly decreased by short hairpin RNA (shRNA), and 2) FAK -/- MEFs, which lack FAK. In both cases, the majority of cells were myofibroblasts, expressing SMalphaA in stress fibers even after treatment with FGF/h. Furthermore, both the surface expression of FGFRs and FGF signaling were greatly reduced in FAK -/- [corrected]MEFs. We conclude that FAK does not contribute to TGFbeta-dependent myofibroblast differentiation. Instead, FAK was necessary for FGF/h signaling in down-regulating expression of SMalphaA, which is synonymous with myofibroblast differentiation. FAK activation could contribute to regulating myofibroblast differentiation, thereby ameliorating fibrosis. |