|  Help  |  About  |  Contact Us

Publication : Type 1 interferons suppress accelerated osteoclastogenesis and prevent loss of bone mass during systemic inflammatory responses to Pneumocystis lung infection.

First Author  Wilkison M Year  2012
Journal  Am J Pathol Volume  181
Issue  1 Pages  151-62
PubMed ID  22626807 Mgi Jnum  J:185537
Mgi Id  MGI:5429123 Doi  10.1016/j.ajpath.2012.03.023
Citation  Wilkison M, et al. (2012) Type 1 interferons suppress accelerated osteoclastogenesis and prevent loss of bone mass during systemic inflammatory responses to pneumocystis lung infection. Am J Pathol 181(1):151-62
abstractText  HIV infection causes loss of CD4(+) T cells and type 1 interferon (IFN)-producing and IFN-responsive dendritic cells, resulting in immunodeficiencies and susceptibility to opportunistic infections, such as Pneumocystis. Osteoporosis and bone marrow failure are additional unexplained complications in HIV-positive patients and patients with AIDS, respectively. We recently demonstrated that mice that lack lymphocytes and IFN a/b receptor (IFrag(-/-)) develop bone marrow failure after Pneumocystis lung infection, whereas lymphocyte-deficient, IFN alpha/beta receptor-competent mice (RAG(-/-)) had normal hematopoiesis. Interestingly, infected IFrag(-/-) mice also exhibited bone fragility, suggesting loss of bone mass. We quantified bone changes and evaluated the potential connection between progressing bone fragility and bone marrow failure after Pneumocystis lung infection in IFrag(-/-) mice. We found that Pneumocystis infection accelerated osteoclastogenesis as bone marrow failure progressed. This finding was consistent with induction of osteoclastogenic factors, including receptor-activated nuclear factor-kappaB ligand and the proapoptotic factor tumor necrosis factor-related apoptosis-inducing ligand, in conjunction with their shared decoy receptor osteoprotegerin, in the bone marrow of infected IFrag(-/-) mice. Deregulation of this axis has also been observed in HIV-positive individuals. Biphosphonate treatment of IFrag(-/-) mice prevented bone loss and protected loss of hematopoietic precursor cells that maintained activity in vitro but did not prevent loss of mature neutrophils. Together, these data show that bone loss and bone marrow failure are partially linked, which suggests that the deregulation of the receptor-activated nuclear factor-kappaB ligand/osteoprotegerin/tumor necrosis factor-related apoptosis-inducing ligand axis may connect the two phenotypes in our model.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression