|  Help  |  About  |  Contact Us

Publication : A mouse model of inducible liver injury caused by tet-on regulated urokinase for studies of hepatocyte transplantation.

First Author  Song X Year  2009
Journal  Am J Pathol Volume  175
Issue  5 Pages  1975-83
PubMed ID  19808649 Mgi Jnum  J:154703
Mgi Id  MGI:4397754 Doi  10.2353/ajpath.2009.090349
Citation  Song X, et al. (2009) A mouse model of inducible liver injury caused by tet-on regulated urokinase for studies of hepatocyte transplantation. Am J Pathol 175(5):1975-83
abstractText  Mouse models of liver injury provide useful tools for studying hepatocyte engraftment and proliferation. A representative model of liver injury is the albumin-urokinase (Alb-uPA) transgenic model, but neonatal lethality hampers its widespread application. To overcome this problem, we generated a transgenic mouse in which transcription of the reverse tetracycline transactivator was (rtTA) driven by the mouse albumin promoter, and backcrossed the rtTA mice onto severe combined immunodeficient (SCID)/bg mice to generate immunodeficient rtTA/SCID mice. We then produced recombinant adenoviruses Ad.TRE-uPA, in which the urokinase was located downstream of the tetracycline response element (TRE). The rtTA/SCID mouse hepatocytes were then infected with Ad.TRE-uPA to establish an inducible liver injury mouse model. In the presence of doxycycline, uPA was exclusively expressed in endogenous hepatocytes and caused extensive liver injury. Enhanced green fluorescent protein-labeled mouse hepatocytes selectively repopulated the rtTA/SCID mouse liver and replaced over 80% of the recipient liver mass after repeated administration of Ad.TRE-uPA. Compared with the original uPA mice, rtTA/SCID mice did not exhibit problems regarding breeding efficiency, and the time window for transplantation was flexible. In addition, we could control the extent of liver injury to facilitate transplantation surgery by regulating the dose of Ad.TRE-uPA. Our inducible mouse model will be convenient for studies of hepatocyte transplantation and hepatic regeneration, and this system will facilitate screening for potential genetic factors critical for engraftment and proliferation of hepatocytes in vivo.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression