First Author | Chang KH | Year | 2015 |
Journal | Nat Commun | Volume | 6 |
Pages | 5914 | PubMed ID | 25574809 |
Mgi Jnum | J:219745 | Mgi Id | MGI:5629642 |
Doi | 10.1038/ncomms6914 | Citation | Chang KH, et al. (2015) Vasculopathy-associated hyperangiotensinemia mobilizes haematopoietic stem cells/progenitors through endothelial AT(2)R and cytoskeletal dysregulation. Nat Commun 6:5914 |
abstractText | Patients with organ failure of vascular origin have increased circulating haematopoietic stem cells and progenitors (HSC/P). Plasma levels of angiotensin II (Ang-II), are commonly increased in vasculopathies. Hyperangiotensinemia results in activation of a very distinct Ang-II receptor set, Rho family GTPase members, and actin in bone marrow endothelial cells (BMEC) and HSC/P, which results in decreased membrane integrin activation in both BMEC and HSC/P, and in HSC/P de-adhesion and mobilization. The Ang-II effect can be reversed pharmacologically and genetically by inhibiting Ang-II production or signalling through BMEC AT2R, HSCP Ang-II receptor type 1 (AT1R)/AT2R or HSC/P RhoA, but not by interfering with other vascular tone mediators. Hyperangiotensinemia and high counts of circulating HSC/P seen in sickle cell disease (SCD) as a result of vascular damage, is significantly decreased by Ang-II inhibitors. Our data define for the first time the role of Ang-II HSC/P traffic regulation and redefine the haematopoietic consequences of anti-angiotensin therapy in SCD. |