|  Help  |  About  |  Contact Us

Publication : Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice.

First Author  Wu D Year  2005
Journal  J Lipid Res Volume  46
Issue  7 Pages  1380-7
PubMed ID  15863839 Mgi Jnum  J:100500
Mgi Id  MGI:3588634 Doi  10.1194/jlr.M400430-JLR200
Citation  Wu D, et al. (2005) Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice. J Lipid Res 46(7):1380-7
abstractText  Individuals with a heterozygous mutation at the ataxia-telangiectasia mutated gene (ATM) have been reported to be predisposed to ischemic heart disease. This report examined for the first time the effect of a heterozygous ATM mutation (ATM(+)(/-)) on plasma lipid levels and atherosclerosis intensity using ATM(+/-), ATM(+)(/+) (wild type), ATM(+)(/+)/LDLR(-)(/-) (low density lipoprotein receptor knockout), ATM(+)(/-)/LDLR(-)(/-), ATM(+)(/+)/ApoE(-)(/-) (apolipoprotein E knockout), and ATM(+)(/-)/ApoE(-)(/-) mice. Our data demonstrated that the plasma cholesterol and triglyceride levels in ATM(+)(/-) and ATM(+)(/-)/LDLR(-)(/-) mice were approximately the same as those in ATM(+)(/+) and ATM(+)(/+)/LDLR(-)(/-) control mice, respectively. In contrast, the plasma cholesterol level was significantly higher in ATM(+)(/-)/ApoE(-)(/-) mice than in ATM(+)(/+)/ApoE(-)(/-) control mice. In addition, the ATM(+)(/-)/ApoE(-)(/-) mice showed higher plasma apoB-48 levels, slower clearance for plasma apoB-48-carrying lipoproteins, and more advanced atherosclerotic lesions in the aorta compared with the ATM(+)(/+)/ApoE(-)(/-) mice. These novel results suggest that the product of ATM is involved in an apoE-independent pathway for catabolism of apoB-48-carrying remnants; therefore, superimposition of a heterozygous ATM mutation onto an ApoE deficiency background reduces the clearance of apoB-48-carrying lipoproteins from the blood circulation and promotes the formation of atherosclerosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression