|  Help  |  About  |  Contact Us

Publication : Lack of mitogen-activated protein kinase phosphatase-1 protects ApoE-null mice against atherosclerosis.

First Author  Shen J Year  2010
Journal  Circ Res Volume  106
Issue  5 Pages  902-10
PubMed ID  20093631 Mgi Jnum  J:170868
Mgi Id  MGI:4947497 Doi  10.1161/CIRCRESAHA.109.198069
Citation  Shen J, et al. (2010) Lack of mitogen-activated protein kinase phosphatase-1 protects ApoE-null mice against atherosclerosis. Circ Res 106(5):902-10
abstractText  RATIONALE: Multiple protein kinases have been implicated in cardiovascular disease; however, little is known about the role of their counterparts: the protein phosphatases. OBJECTIVE: To test the hypothesis that mitogen-activated protein kinase phosphatase (MKP)-1 is actively involved in atherogenesis. METHODS AND RESULTS: Mice with homozygous deficiency in MKP-1 (MKP-1(-/-)) were bred with apolipoprotein (Apo)E-deficient mice (ApoE(-/-)) and the 3 MKP-1 genotypes (MKP-1(+/+)/ApoE(-/-) ; MKP-1(+/-)/ApoE(-/-) and MKP-1(-/-)/ApoE(-/-)) were maintained on a normal chow diet for 16 weeks. The 3 groups of mice exhibited similar body weight and serum lipid profiles; however, both MKP-1(+/-) and MKP-1(-/-) mice had significantly less aortic root atherosclerotic lesion formation than MKP-1(+/+) mice. Less en face lesion was observed in 8-month-old MKP-1(-/-) mice. The reduction in atherosclerosis was accompanied by decreased plasma levels of interleukin-1alpha and tumor necrosis factor alpha, and preceded by increased antiinflammatory cytokine interleukin-10. In addition, MKP-1-null mice had higher levels of plasma stromal cell-derived factor-1a, which negatively correlated with atherosclerotic lesion size. Immunohistochemical analysis revealed that MKP-1 expression was enriched in macrophage-rich areas versus smooth muscle cell regions of the atheroma. Furthermore, macrophages isolated from MKP-1-null mice showed dramatic defects in their spreading/migration and impairment in extracellular signal-regulated kinase, but not c-Jun N-terminal kinase and p38, pathway activation. In line with this, MKP-1-null atheroma exhibited less macrophage content. Finally, transplantation of MKP-1-intact bone marrow into MKP-1-null mice fully rescued the wild-type atherosclerotic phenotype. CONCLUSION: These findings demonstrate that chronic deficiency of MKP-1 leads to decreased atherosclerosis via mechanisms involving impaired macrophage migration and defective extracellular signal-regulated kinase signaling.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression