|  Help  |  About  |  Contact Us

Publication : Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice.

First Author  Alp NJ Year  2004
Journal  Arterioscler Thromb Vasc Biol Volume  24
Issue  3 Pages  445-50
PubMed ID  14707037 Mgi Jnum  J:102062
Mgi Id  MGI:3606550 Doi  10.1161/01.ATV.0000115637.48689.77
Citation  Alp NJ, et al. (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 24(3):445-50
abstractText  OBJECTIVE: Increased production of reactive oxygen species and loss of endothelial nitric oxide (NO) bioactivity are key features of vascular disease states such as atherosclerosis. Tetrahydrobiopterin (BH4) is a required cofactor for NO synthesis by endothelial nitric oxide synthase (eNOS); pharmacologic studies suggest that reduced BH4 availability may be an important mediator of endothelial dysfunction in atherosclerosis. We aimed to investigate the importance of endothelial BH4 availability in atherosclerosis using a transgenic mouse model with endothelial-targeted overexpression of the rate-limiting enzyme in BH4 synthesis, GTP-cyclohydrolase I (GTPCH). METHODS AND RESULTS: Transgenic mice were crossed into an ApoE knockout (ApoE-KO) background and fed a high-fat diet for 16 weeks. Compared with ApoE-KO controls, transgenic mice (ApoE-KO/GCH-Tg) had higher aortic BH4 levels, reduced endothelial superoxide production and eNOS uncoupling, increased cGMP levels, and preserved NO-mediated endothelium dependent vasorelaxations. Furthermore, aortic root atherosclerotic plaque was significantly reduced in ApoE-KO/GCH-Tg mice compared with ApoE-KO controls. CONCLUSIONS: These findings indicate that BH4 availability is a critical determinant of eNOS regulation in atherosclerosis and is a rational therapeutic target to restore NO-mediated endothelial function and reduce disease progression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression