First Author | Arakawa M | Year | 2010 |
Journal | Diabetes | Volume | 59 |
Issue | 4 | Pages | 1030-7 |
PubMed ID | 20068138 | Mgi Jnum | J:164336 |
Mgi Id | MGI:4831109 | Doi | 10.2337/db09-1694 |
Citation | Arakawa M, et al. (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59(4):1030-7 |
abstractText | OBJECTIVE: Exogenous administration of glucagon-like peptide-1 (GLP-1) or GLP-1 receptor agonists such as an exendin-4 has direct beneficial effects on the cardiovascular system. However, their effects on atherosclerogenesis have not been elucidated. The aim of this study was to investigate the effects of GLP-1 on accumulation of monocytes/macrophages on the vascular wall, one of the earliest steps in atherosclerogenesis. RESEARCH DESIGN AND METHODS: After continuous infusion of low (300 pmol . kg(-1) . day(-1)) or high (24 nmol . kg(-1) . day(-1)) dose of exendin-4 in C57BL/6 or apolipoprotein E-deficient mice (apoE(-/-)), we evaluated monocyte adhesion to the endothelia of thoracic aorta and arteriosclerotic lesions around the aortic valve. The effects of exendin-4 were investigated in mouse macrophages and human monocytes. RESULTS: Treatment with exendin-4 significantly inhibited monocytic adhesion in the aortas of C57BL/6 mice without affecting metabolic parameters. In apoE(-/-) mice, the same treatment reduced monocyte adhesion to the endothelium and suppressed atherosclerogenesis. In vitro treatment of mouse macrophages with exendin-4 suppressed lipopolysaccharide-induced mRNA expression of tumor necrosis factor-alpha and monocyte chemoattractant protein-1, and suppressed nuclear translocation of p65, a component of nuclear factor-kappaB. This effect was reversed by either MDL-12330A, a cAMP inhibitor or PKI(14-22), a protein kinase A-specific inhibitor. In human monocytes, exendin-4 reduced the expression of CD11b. CONCLUSIONS: Our data suggested that GLP-1 receptor agonists reduced monocyte/macrophage accumulation in the arterial wall by inhibiting the inflammatory response in macrophages, and that this effect may contribute to the attenuation of atherosclerotic lesion by exendin-4. |