|  Help  |  About  |  Contact Us

Publication : Oxidized cholesterol in the diet accelerates the development of atherosclerosis in LDL receptor- and apolipoprotein E-deficient mice.

First Author  Staprans I Year  2000
Journal  Arterioscler Thromb Vasc Biol Volume  20
Issue  3 Pages  708-14
PubMed ID  10712395 Mgi Jnum  J:103278
Mgi Id  MGI:3609077 Doi  10.1161/01.atv.20.3.708
Citation  Staprans I, et al. (2000) Oxidized cholesterol in the diet accelerates the development of atherosclerosis in LDL receptor- and apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 20(3):708-14
abstractText  The aim of the current study was to determine whether oxidized cholesterol in the diet accelerates atherosclerosis in low density lipoprotein receptor- (LDLR) and apolipoprotein E- (apo E) deficient mice. Mice were fed either a control diet or a diet containing oxidized cholesterol. For LDLR-deficient mice, the control diet consisted of regular mouse chow to which 1.0% cholesterol was added. The oxidized diet was identical to the control diet except that 5% of the added cholesterol was oxidized. In apo E-deficient mice, the control diet contained 0.15% cholesterol, whereas in the oxidized diet, 5% of the added cholesterol was oxidized. LDLR-deficient and apo E-deficient mice were fed the experimental diets for 7 and 4 months, respectively. In mice fed the oxidized-cholesterol diets, the levels of oxidized cholesterol in sera were increased. At the end of the experiment, aortas were removed and atherosclerosis was assessed. We found that in LDLR-deficient mice, feeding of an oxidized-cholesterol diet resulted in a 32% increase in fatty streak lesions (15.93+/-1.59% versus 21.00+/-1.38%, P<0.03). Similarly, in apo E-deficient mice, feeding of an oxidized-cholesterol diet increased fatty streak lesions by 38% (15.01+/-0.92% versus 20. 70+/-0.86%, P<0.001). The results of the current study thus demonstrate that oxidized cholesterol in the diet accelerates fatty streak lesion formation in both LDLR- and apo E-deficient mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression