|  Help  |  About  |  Contact Us

Publication : The role of CD4-dependent signaling in interleukin-16 induced c-Fos expression and facilitation of neurite outgrowth in cerebellar granule neurons.

First Author  Fenster CP Year  2010
Journal  Neurosci Lett Volume  485
Issue  3 Pages  212-6
PubMed ID  20849916 Mgi Jnum  J:167253
Mgi Id  MGI:4867609 Doi  10.1016/j.neulet.2010.09.014
Citation  Fenster CP, et al. (2010) The role of CD4-dependent signaling in interleukin-16 induced c-Fos expression and facilitation of neurite outgrowth in cerebellar granule neurons. Neurosci Lett 485(3):212-6
abstractText  Neuronal interleukin 16 (NIL-16) is the larger neural-specific splice variant of the interleukin-16 (IL16) gene and shows restricted expression to post-mitotic neurons of the mammalian hippocampus and cerebellum. Although the N-terminus of NIL-16 is unique to the neuronal variant, the C-terminus is identical to pro-IL-16, the IL-16 precursor expressed primarily in T-cells. IL-16 was originally described as a proinflammatory cytokine and has diverse immunoregulatory effects which involve signaling through CD4. NIL-16-expressing neurons can secrete IL-16 and may express CD4; moreover, treatment of cultured cerebellar granule neurons (CGCs) with IL-16 increases the expression of c-Fos, an immediate-early gene which transcriptionally regulates genes directing survival, proliferation, and growth. Taken together, we hypothesize that IL-16 functions as a neuroregulatory cytokine which signals through neuronal CD4 receptors. In this study, we investigated the role of CD4 in IL-16-induced c-Fos expression in CGCs, as well as the effects of IL-16 on neuronal survival and growth. We detected components involved in IL-16-signaling in lymphocytes, including CD4 and the associated tyrosine kinase p56(lck), in CGCs using qRT-PCR and immunoblotting. We also show that IL-16 induces c-Fos expression in wild-type CGCs, but not CD4-deficient CGCs or following inhibition of p56(lck). Finally, treatment of CGCs with IL-16 enhanced neurite outgrowth, an effect also observed in CD4-deficient CGCs. Taken together, our results indicate that IL-16-signaling affects neuronal gene expression and growth through CD4-dependent and independent pathways.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression