|  Help  |  About  |  Contact Us

Publication : Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling.

First Author  Anastasaki C Year  2022
Journal  Acta Neuropathol Commun Volume  10
Issue  1 Pages  120
PubMed ID  35986378 Mgi Jnum  J:337179
Mgi Id  MGI:7331695 Doi  10.1186/s40478-022-01428-2
Citation  Anastasaki C, et al. (2022) Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol Commun 10(1):120
abstractText  A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

19 Bio Entities

Trail: Publication

0 Expression