|  Help  |  About  |  Contact Us

Publication : Delayed osteoblastic differentiation and bone development in Cx43 knockout mice.

First Author  Chaible LM Year  2011
Journal  Toxicol Pathol Volume  39
Issue  7 Pages  1046-55
PubMed ID  21934140 Mgi Jnum  J:181527
Mgi Id  MGI:5311551 Doi  10.1177/0192623311422075
Citation  Chaible LM, et al. (2011) Delayed osteoblastic differentiation and bone development in Cx43 knockout mice. Toxicol Pathol 39(7):1046-55
abstractText  GJA1 gene (Connexin43, also known as Cx43) is the most abundant gap junction protein isoform in animal cells and is associated with bone development in embryos. The objective of the present work was to evaluate in vivo osteal development in GJA1-deficient fetal mice through determination of the histological and molecular alterations induced by partial or total deletion of the GJA1 gene. Heterozygous C57BL/6 mice (HT) harboring a null mutation of the GJA1 gene were mated, and pregnant females were submitted to euthanasia and Caesarean section from 12.5 to 19.5 days post coitum (dpc). HT (GJA1(+/-)) and homozygous (GJA1(-/- )) knockout (KO) mutants and wild-type (WT) fetuses were identified by polymerase chain reaction (PCR), and development curves were constructed on the basis of fetus weight and crown-rump length. Histopathological, histochemical, and real-time PCR analyses were performed in order to assess the expression of markers associated with bone development, namely, osteocalcin, osteopontin, alkaline phosphatase, RUNX2, GJA1, GJC1 (Cx45), and GJA3 (Cx46). HT and KO fetuses exhibited delays in the differentiation of osteoblasts and, consequently, in bone development in comparison with the WT group. Additionally, less deposition of mineralized and osteoid matrix was observed in GJA1-deficient fetuses. Bone development in KO fetuses was delayed through the moment of birth, but in HT animals the delay only extended until 17.5 dpc, following which development was normalized. The expression of genes coding for osteocalcin, osteopontin, alkaline phosphatise, and RUNX2 were also delayed in GJA1-deficient fetuses. Animals that exhibited a lower expression of GJA1 presented delayed expression of the GJC1 and GJA3 genes and their corresponding protein products in the bone tissue. The results of the present study contribute to our understanding of the function of GJA1 during bone development and suggest that GJC1 could play a role in restoring intercellular communication in GJA1-deficient mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression