|  Help  |  About  |  Contact Us

Publication : Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade.

First Author  Christensen JE Year  2009
Journal  J Immunol Volume  182
Issue  2 Pages  1079-87
PubMed ID  19124751 Mgi Jnum  J:143550
Mgi Id  MGI:3827112 Doi  10.4049/jimmunol.182.2.1079
Citation  Christensen JE, et al. (2009) Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. J Immunol 182(2):1079-87
abstractText  Intracerebral inoculation of immunocompetent mice with lymphocytic choriomeningitis virus (LCMV) normally results in fatal CD8+ T cell mediated meningoencephalitis. However, in CXCL10-deficient mice, the virus-induced CD8+ T cell accumulation in the neural parenchyma is impaired, and only 30-50% of the mice succumb to the infection. Similar results are obtained in mice deficient in the matching chemokine receptor, CXCR3. Together, these findings point to a key role for CXCL10 in regulating the severity of the LCMV-induced inflammatory process. For this reason, we now address the mechanisms regulating the expression of CXCL10 in the CNS of LCMV-infected mice. Using mice deficient in type I IFN receptor, type II IFN receptor, or type II IFN, as well as bone marrow chimeras expressing CXCL10 only in resident cells or only in bone marrow-derived cells, we analyzed the up-stream regulation as well as the cellular source of CXCL10. We found that expression of CXCL10 initially depends on signaling through the type I IFN receptor, while late expression and up-regulation requires type II IFN produced by the recruited CD8+ T cells. Throughout the infection, the producers of CXCL10 are exclusively resident cells of the CNS, and astrocytes are the dominant expressors in the neural parenchyma, not microglial cells or recruited bone marrow-derived cell types. These results are consistent with a model suggesting a bidirectional interplay between resident cells of the CNS and the recruited virus-specific T cells with astrocytes as active participants in the local antiviral host response.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression