|  Help  |  About  |  Contact Us

Publication : Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS.

First Author  Hong F Year  2002
Journal  J Clin Invest Volume  110
Issue  10 Pages  1503-13
PubMed ID  12438448 Mgi Jnum  J:80183
Mgi Id  MGI:2445248 Doi  10.1172/JCI15841
Citation  Hong F, et al. (2002) Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS. J Clin Invest 110(10):1503-13
abstractText  T cell-mediated fulminant hepatitis is a life-threatening event for which the underlying mechanism is not fully understood. Injection of concanavalin A (Con A) into mice recapitulates the histological and pathological sequelae of T cell-mediated hepatitis. In this model, both signal transducer and activator of transcription factor 1 (STAT1) and STAT3 are activated in the liver. Disruption of the STAT1 gene by way of genetic knockout attenuates liver injury, suppresses CD4(+) and NK T cell activation, and downregulates expression of proapoptotic interferon regulatory factor-1 protein and suppressor of cytokine signaling-1 (SOCS1), but enhances STAT3 activation and STAT3-controlled antiapoptotic signals. Studies from IFN-gamma-deficient mice indicate that IFN-gamma not only is the major cytokine responsible for STAT1 activation but also partially accounts for STAT3 activation. Moreover, downregulation of STAT3 activation in IL-6-deficient mice is associated with decreased STAT3-controlled antiapoptotic signals and expression of SOCS3, but upregulation of STAT1 activation and STAT1-induced proapoptotic signals and exacerbation of liver injury. Taken together, these findings suggest that STAT1 plays a harmful role in Con A-mediated hepatitis by activation of CD4(+) and NK T cells and directly inducing hepatocyte death, whereas STAT3 protects against liver injury by suppression of IFN-gamma signaling and induction of antiapoptotic protein Bcl-X(L). STAT1 and STAT3 in hepatocytes also negatively regulate one another through the induction of SOCS.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression