|  Help  |  About  |  Contact Us

Publication : Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection.

First Author  Parent MA Year  2006
Journal  Infect Immun Volume  74
Issue  6 Pages  3381-6
PubMed ID  16714568 Mgi Jnum  J:109236
Mgi Id  MGI:3626149 Doi  10.1128/IAI.00185-06
Citation  Parent MA, et al. (2006) Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection. Infect Immun 74(6):3381-6
abstractText  Pulmonary infection by Yersinia pestis causes pneumonic plague, a rapidly progressing and often fatal disease. To aid the development of safe and effective pneumonic plague vaccines, we are deciphering mechanisms used by the immune system to protect against lethal pulmonary Y. pestis infection. In murine pneumonic plague models, passive transfer of convalescent-phase sera confers protection, as does active vaccination with live Y. pestis. Here, we demonstrate that protection by either protocol relies upon both gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) cytokines classically associated with type 1 cellular immunity. In both protocols, abrogating IFN-gamma or TNF-alpha activity significantly decreases survival and increases the bacterial burden in pulmonary, splenic, and hepatic tissues. Neutralization of either cytokine also counteracts challenge-induced, vaccination-dependent upregulation of nitric oxide synthase 2 (NOS2). Moreover, genetic depletion of NOS2 suppresses protection conferred by serotherapy. We conclude that IFN-gamma, TNF-alpha, and NOS2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Y. pestis challenge. These observations strongly suggest that plague vaccines should strive to maximally prime both cellular and humoral immunity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

14 Bio Entities

Trail: Publication

0 Expression