| First Author | Ka SM | Year | 2011 |
| Journal | Am J Physiol Renal Physiol | Volume | 301 |
| Issue | 6 | Pages | F1218-30 |
| PubMed ID | 21900455 | Mgi Jnum | J:180031 |
| Mgi Id | MGI:5305009 | Doi | 10.1152/ajprenal.00050.2011 |
| Citation | Ka SM, et al. (2011) Decoy receptor 3 inhibits renal mononuclear leukocyte infiltration and apoptosis and prevents progression of IgA nephropathy in mice. Am J Physiol Renal Physiol 301(6):F1218-30 |
| abstractText | The progression of IgA nephropathy (IgAN), the most frequent type of primary glomerulonephritis, is associated with high levels of mononuclear leukocyte infiltration into the kidney. These cells consist mainly of T cells and macrophages. Our previous study showed that a decoy receptor 3 (DCR3) gene therapy can prevent the development of a mouse autoimmune glomerulonephritis model by its potent immune modulating effects (Ka SM, Sytwu HK, Chang DM, Hsieh SL, Tsai PY, Chen A. J Am Soc Nephrol 18: 2473-2485, 2007). Here, we tested the hypothesis that DCR3 might prevent the progression of IgAN, an immune complex-mediated primary glomerulonephritis, by inhibiting T cell activation, renal T cell/macrophage infiltration, and protecting the kidney from apoptosis. We used a progressive IgAN (Prg-IgAN) model in B cell-deficient mice, because the mice are characterized by a dramatic proliferation of activated T cells systemically and progressive NF-kappaB activation in the kidney. We treated the animals with short-term gene therapy with DCR3 plasmids by hydrodynamics-based gene delivery. When the mice were euthanized on day 21, we found that, compared with empty vector-treated (disease control) Prg-IgAN mice, DCR3 gene therapy resulted in 1) systemic inhibition of T cell activation and proliferation; 2) lower serum levels of proinflammatory cytokines; 3) improved proteinuria, renal function, and renal pathology (inhibiting the development of marked glomerular proliferation, crescent formation, glomerulosclerosis, and interstitial inflammation); 5) suppression of T cell and macrophage infiltration into the periglomerular interstitium of the kidney; and 5) a reduction in apoptotic figures in the kidney. On the basis of these findings, DCR3 might be useful therapeutically in preventing the progression of IgAN. |