|  Help  |  About  |  Contact Us

Publication : Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice.

First Author  Mingam R Year  2008
Journal  Eur J Neurosci Volume  28
Issue  9 Pages  1877-86
PubMed ID  18973601 Mgi Jnum  J:143934
Mgi Id  MGI:3829351 Doi  10.1111/j.1460-9568.2008.06470.x
Citation  Mingam R, et al. (2008) Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur J Neurosci 28(9):1877-86
abstractText  Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cell membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 (also known as omega3) PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness behaviour. Our results show that mice exposed throughout life to a diet containing n-3 PUFA (n-3/n-6 diet) display a decrease in social interaction that does not occur in mice submitted to a diet devoid of n-3 PUFA (n-6 diet). LPS induced high IL-6 plasma levels as well as expression of IL-6 mRNA in the hippocampus and cFos mRNA in the brainstem of mice fed either diet, indicating intact immune-to-brain communication. However, STAT3 and STAT1 activation, a hallmark of the IL-6 signalling pathway, was lower in the hippocampus of LPS-treated n-6 mice than n-3/n-6 mice. In addition, LPS did not reduce social interaction in IL-6-knockout (IL-6-KO) mice and failed to induce STAT3 activation in the brain of IL-6-KO mice. Altogether, these findings point to alteration in brain STAT3 as a key mechanism for the lack of effect of LPS on social interaction in mice fed with the n-6 PUFA diet. The relative deficiency of Western diets in n-3 PUFA could impact on behavioural aspects of the host response to infection.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression