| First Author | Nowell MA | Year | 2003 |
| Journal | J Immunol | Volume | 171 |
| Issue | 6 | Pages | 3202-9 |
| PubMed ID | 12960349 | Mgi Jnum | J:85371 |
| Mgi Id | MGI:2674196 | Doi | 10.4049/jimmunol.171.6.3202 |
| Citation | Nowell MA, et al. (2003) Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J Immunol 171(6):3202-9 |
| abstractText | Studies in IL-6-deficient (IL-6(-/-)) mice highlight that IL-6 contributes to arthritis progression. However, the molecular mechanism controlling its activity in vivo remains unclear. Using an experimental arthritis model in IL-6(-/-) mice, we have established a critical role for the soluble IL-6R in joint inflammation. Although intra-articular administration of IL-6 itself was insufficient to reconstitute arthritis within these mice, a soluble IL-6R-IL-6 fusion protein (HYPER-IL-6) restored disease activity. Histopathological assessment of joint sections demonstrated that HYPER-IL-6 increased arthritis severity and controlled intrasynovial mononuclear leukocyte recruitment through the CC-chemokine CCL2. Activation of synovial fibroblasts by soluble IL-6R and IL-6 emphasized that these cells may represent the source of CCL2 in vivo. Specific blockade of soluble IL-6R signaling in wild-type mice using soluble gp130 ameliorated disease. Consequently, soluble IL-6R-mediated signaling represents a promising therapeutic target for the treatment of rheumatoid arthritis. |