First Author | Guindi C | Year | 2012 |
Journal | Cell Immunol | Volume | 272 |
Issue | 2 | Pages | 259-68 |
PubMed ID | 22070873 | Mgi Jnum | J:181379 |
Mgi Id | MGI:5311103 | Doi | 10.1016/j.cellimm.2011.10.005 |
Citation | Guindi C, et al. (2012) Differential role of NF-kappaB, ERK1/2 and AP-1 in modulating the immunoregulatory functions of bone marrow-derived dendritic cells from NOD mice. Cell Immunol 272(2):259-68 |
abstractText | Tolerogenic dendritic cells represent a promising immunotherapy in autoimmunity. However, the molecular mechanisms that drive tolerogenic DCs functions are not well understood. We used GM-CSF or GM-CSF+IL-4 to generate tolerogenic (GM/DCs) and immunogenic (IL-4/DCs) BMDCs from NOD mice, respectively. GM/DCs were resistant to maturation, produced large amounts of IL-10 but not IL-12p70. GM/DCs displayed a reduced capacity to activate diabetogenic CD8(+) T-cells and were efficient to induce Tregs expansion and conversion. LPS stimulation triggered ERK1/2 activation that was sustained in GM/DCs but not in IL-4/DCs. ERK1/2 and AP-1 were involved in IL-10 production in GM/DCs but not in their resistance to maturation. Supershift analysis showed that NF-kappaB DNA binding complex contains p52 and p65 in GM/DCs, whereas it contains p52, p65 and RelB in IL-4/DCs. ChIP experiments revealed that p65 was recruited to IL-10 promoter following LPS stimulation of GM/DCs whereas its binding to IL-12p35 promoter was abolished. Our results suggest that immunoregulatory functions of GM/DCs are differentially regulated by ERK1/2, AP-1 and NF-kappaB pathways. |