First Author | Manicassamy S | Year | 2009 |
Journal | Nat Med | Volume | 15 |
Issue | 4 | Pages | 401-9 |
PubMed ID | 19252500 | Mgi Jnum | J:149376 |
Mgi Id | MGI:3848387 | Doi | 10.1038/nm.1925 |
Citation | Manicassamy S, et al. (2009) Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat Med 15(4):401-9 |
abstractText | Immune sensing of a microbe occurs via multiple receptors. How signals from different receptors are coordinated to yield a specific immune response is poorly understood. We show that two pathogen recognition receptors, Toll-like receptor 2 (TLR2) and dectin-1, recognizing the same microbial stimulus, stimulate distinct innate and adaptive responses. TLR2 signaling induced splenic dendritic cells (DCs) to express the retinoic acid metabolizing enzyme retinaldehyde dehydrogenase type 2 and interleukin-10 (IL-10) and to metabolize vitamin A and stimulate Foxp3(+) T regulatory cells (T(reg) cells). Retinoic acid acted on DCs to induce suppressor of cytokine signaling-3 expression, which suppressed activation of p38 mitogen-activated protein kinase and proinflammatory cytokines. Consistent with this finding, TLR2 signaling induced T(reg) cells and suppressed IL-23 and T helper type 17 (T(H)17) and T(H)1-mediated autoimmune responses in vivo. In contrast, dectin-1 signaling mostly induced IL-23 and proinflammatory cytokines and augmented T(H)17 and T(H)1-mediated autoimmune responses in vivo. These data define a new mechanism for the systemic induction of retinoic acid and immune suppression against autoimmunity. |