First Author | Krishnamurthy P | Year | 2010 |
Journal | FASEB J | Volume | 24 |
Issue | 7 | Pages | 2484-94 |
PubMed ID | 20219984 | Mgi Jnum | J:162353 |
Mgi Id | MGI:4818741 | Doi | 10.1096/fj.09-149815 |
Citation | Krishnamurthy P, et al. (2010) Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. FASEB J 24(7):2484-94 |
abstractText | Prolonged inflammatory response is associated with left ventricular (LV) dysfunction and adverse remodeling following myocardial infarction (MI). IL-10 inhibits inflammation by suppressing HuR-mediated mRNA stabilization of proinflammatory cytokines. Here we report that following MI, IL-10(-/-) mice showed exaggerated LV dysfunction, fibrosis, and cardiomyocyte apoptosis. Short-hairpin RNA (shRNA)-mediated knockdown of HuR in the myocardium significantly reversed MI-induced LV dysfunctions and LV remodeling. HuR knockdown significantly reduced MI-induced cardiomyocyte apoptosis concomitant with reduced p53 expression. Moreover, HuR knockdown significantly reduced infarct size and fibrosis area, which in turn was associated with decreased TGF-beta expression. In vitro, stable knockdown of HuR in mouse macrophage cell line RAW 264.7 corroborated in vivo data and revealed reduced mRNA expression of TNF-alpha, TGF-beta, and p53 following LPS challenge, which was associated with a marked reduction in the mRNA stability of these genes. Taken together, our studies suggest that HuR is a direct target of IL-10, and HuR knockdown mimics anti-inflammatory effects of IL-10. |