First Author | Xia Y | Year | 2022 |
Journal | Nat Commun | Volume | 13 |
Issue | 1 | Pages | 3920 |
PubMed ID | 35798734 | Mgi Jnum | J:360015 |
Mgi Id | MGI:7313460 | Doi | 10.1038/s41467-022-31475-1 |
Citation | Xia Y, et al. (2022) TGFbeta reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat Commun 13(1):3920 |
abstractText | It is well-established that receptor activator of NF-kappaB ligand (RANKL) is the inducer of physiological osteoclast differentiation. However, the specific drivers and mechanisms driving inflammatory osteoclast differentiation under pathological conditions remain obscure. This is especially true given that inflammatory cytokines such as tumor necrosis factor (TNF) demonstrate little to no ability to directly drive osteoclast differentiation. Here, we found that transforming growth factor beta (TGFbeta) priming enables TNF to effectively induce osteoclastogenesis, independently of the canonical RANKL pathway. Lack of TGFbeta signaling in macrophages suppresses inflammatory, but not basal, osteoclastogenesis and bone resorption in vivo. Mechanistically, TGFbeta priming reprograms the macrophage response to TNF by remodeling chromatin accessibility and histone modifications, and enables TNF to induce a previously unrecognized non-canonical osteoclastogenic program, which includes suppression of the TNF-induced IRF1-IFNbeta-IFN-stimulated-gene axis, IRF8 degradation and B-Myb induction. These mechanisms are active in rheumatoid arthritis, in which TGFbeta level is elevated and correlates with osteoclast activity. Our findings identify a TGFbeta/TNF-driven inflammatory osteoclastogenic program, and may lead to development of selective treatments for inflammatory osteolysis. |