| First Author | Seneviratne A | Year | 2021 |
| Journal | Cardiovasc Res | Volume | 117 |
| Issue | 5 | Pages | 1295-1308 |
| PubMed ID | 32667970 | Mgi Jnum | J:331130 |
| Mgi Id | MGI:6716618 | Doi | 10.1093/cvr/cvaa171 |
| Citation | Seneviratne A, et al. (2021) Metformin directly suppresses atherosclerosis in normoglycaemic mice via haematopoietic adenosine monophosphate-activated protein kinase. Cardiovasc Res 117(5):1295-1308 |
| abstractText | AIMS: Atherosclerotic vascular disease has an inflammatory pathogenesis. Heme from intraplaque haemorrhage may drive a protective and pro-resolving macrophage M2-like phenotype, Mhem, via AMPK and activating transcription factor 1 (ATF1). The antidiabetic drug metformin may also activate AMPK-dependent signalling. Hypothesis: Metformin systematically induces atheroprotective genes in macrophages via AMPK and ATF1, thereby suppresses atherogenesis. METHODS AND RESULTS: Normoglycaemic Ldlr-/- hyperlipidaemic mice were treated with oral metformin, which profoundly suppressed atherosclerotic lesion development (P < 5 x 10-11). Bone marrow transplantation from AMPK-deficient mice demonstrated that metformin-related atheroprotection required haematopoietic AMPK [analysis of variance (ANOVA), P < 0.03]. Metformin at a clinically relevant concentration (10 muM) evoked AMPK-dependent and ATF1-dependent increases in Hmox1, Nr1h2 (Lxrb), Abca1, Apoe, Igf1, and Pdgf, increases in several M2-markers and decreases in Nos2, in murine bone marrow macrophages. Similar effects were seen in human blood-derived macrophages, in which metformin-induced protective genes and M2-like genes, suppressible by si-ATF1-mediated knockdown. Microarray analysis comparing metformin with heme in human macrophages indicated that the transcriptomic effects of metformin were related to those of heme, but not identical. Metformin-induced lesional macrophage expression of p-AMPK, p-ATF1, and downstream M2-like protective effects. CONCLUSION: Metformin activates a conserved AMPK-ATF1-M2-like pathway in mouse and human macrophages, and results in highly suppressed atherogenesis in hyperlipidaemic mice via haematopoietic AMPK. |