|  Help  |  About  |  Contact Us

Publication : Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo.

First Author  Dong Y Year  2010
Journal  Circulation Volume  121
Issue  6 Pages  792-803
PubMed ID  20124121 Mgi Jnum  J:170442
Mgi Id  MGI:4946488 Doi  10.1161/CIRCULATIONAHA.109.900928
Citation  Dong Y, et al. (2010) Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121(6):792-803
abstractText  BACKGROUND: Aberrant endoplasmic reticulum (ER) stress is associated with several cardiovascular diseases, including atherosclerosis. The mechanism by which aberrant ER stress develops is poorly understood. This study investigated whether dysfunction of AMP-activated protein kinase (AMPK) causes aberrant ER stress and atherosclerosis in vivo. METHODS AND RESULTS: Human umbilical vein endothelial cells and mouse aortic endothelial cells from AMPK-deficient mice were used to assess the level of ER stress with Western blotting. Reduction of AMPKalpha2 expression significantly increased the level of ER stress in human umbilical vein endothelial cells. In addition, mouse aortic endothelial cells from AMPKalpha2 knockout (AMPKalpha2(-/-)) mice had higher expression of markers of ER stress and increased levels of intracellular Ca2+. These phenotypes were abolished by adenovirally overexpressing constitutively active AMPK mutants (Ad-AMPK-CA) or by transfecting sarcoendoplasmic reticulum calcium ATPase (SERCA). Inhibition of SERCA induced ER stress in endothelial cells. Furthermore, reduction of AMPKalpha expression suppressed SERCA activity. In addition, SERCA activity was significantly reduced concomitantly with increased oxidation of SERCA in mouse aortic endothelial cells from AMPKalpha2(-/-) mice. Both of these phenotypes were abolished by adenovirally overexpressing Ad-AMPK-CA. Furthermore, Tempol, which restored SERCA activity and decreased oxidized SERCA levels, markedly reduced the level of ER stress in mouse aortic endothelial cells from AMPKalpha2(-/-) mice. Finally, oral administration of tauroursodeoxycholic acid, a chemical chaperone that inhibits ER stress, significantly reduced both ER stress and aortic lesion development in low-density lipoprotein receptor- and AMPKalpha2-deficient mice. CONCLUSIONS: These results suggest that AMPK functions as a physiological suppressor of ER stress by maintaining SERCA activity and intracellular Ca2+ homeostasis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression