| First Author | Sakamoto N | Year | 2011 |
| Journal | J Immunol | Volume | 186 |
| Issue | 8 | Pages | 5004-11 |
| PubMed ID | 21402897 | Mgi Jnum | J:172521 |
| Mgi Id | MGI:5008210 | Doi | 10.4049/jimmunol.1003557 |
| Citation | Sakamoto N, et al. (2011) Apolipoprotein B binding domains: evidence that they are cell-penetrating peptides that efficiently deliver antigenic peptide for cross-presentation of cytotoxic T cells. J Immunol 186(8):5004-11 |
| abstractText | Low-density lipoproteins (LDLs) are a good source of cholesterol, which is important in cellular homeostasis and production of steroids. Apolipoprotein B-100 (ApoB-100), the sole protein component of LDL, is known to bind to cell surface LDL receptor (LDLR) or cell surface-bound proteoglycans and to be internalized into cells. We found that APCs, consisting of macrophages and dendritic cells, upregulate LDLR on culture in vitro without obvious stimulation. In contrast, T cell populations only upregulate LDLR on activation. Thus, we strategized that tagging immunogens to ApoB-100 might be a useful means to target Ag to APCs. We generated fusion proteins consisting of receptor binding sites in ApoB-100, coupled to OVA peptide (ApoB-OVA), as Ag delivery vehicles and demonstrated that this novel delivery method successfully cross-presented OVA peptides in eliciting CTL responses. Surprisingly, internalization of ApoB-OVA peptide occurred via cell surface proteoglycans rather than LDLRs, consistent with evidence that structural elements of ApoB-100 indicate it to have cell-penetrating peptide properties. Finally, we used this strategy to assess therapeutic vaccination in a tumor setting. OVA-expressing EL-4 tumors grew progressively in mice immunized with ApoB-100 alone but regressed in mice immunized with ApoB-OVA fusion protein, coinciding with development of OVA-specific CTLs. Thus, to our knowledge, this is the first article to describe the cell-penetrating properties of a conserved human origin cell penetrating peptide that may be harnessed as a novel vaccination strategy as well as a therapeutics delivery device. |