| First Author | Li R | Year | 2013 |
| Journal | J Lipid Res | Volume | 54 |
| Issue | 6 | Pages | 1608-1615 |
| PubMed ID | 23564731 | Mgi Jnum | J:328409 |
| Mgi Id | MGI:6868219 | Doi | 10.1194/jlr.M035014 |
| Citation | Li R, et al. (2013) Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice. J Lipid Res 54(6):1608-1615 |
| abstractText | Exposure to ambient particulate matter (PM) is a risk factor for cardiovascular diseases. The redox-active ultrafine particles (UFPs) promote vascular oxidative stress and inflammatory responses. We hypothesized that UFPs modulated lipid metabolism and anti-oxidant capacity of high density lipoprotein (HDL) with an implication in atherosclerotic lesion size. Fat-fed low density lipoprotein receptor-null (LDLR(-)/(-) mice were exposed to filtered air (FA) or UFPs for 10 weeks with or without administering an apolipoprotein A-I mimetic peptide made of D-amino acids, D-4F. LDLR(-)/(-) mice exposed to UFPs developed a reduced plasma HDL level (P < 0.01), paraoxonase activity (P < 0.01), and HDL anti-oxidant capacity (P < 0.05); but increased LDL oxidation, free oxidized fatty acids, triglycerides, serum amyloid A (P < 0.05), and tumor necrosis factor alpha (P < 0.05), accompanied by a 62% increase in the atherosclerotic lesion ratio of the en face aortic staining and a 220% increase in the cross-sectional lesion area of the aortic sinus (P < 0.001). D-4F administration significantly attenuated these changes. UFP exposure promoted pro-atherogenic lipid metabolism and reduced HDL anti-oxidant capacity in fat-fed LDLR(-)/(-) mice, associated with a greater atherosclerotic lesion size compared with FA-exposed animals. D-4F attenuated UFP-mediated pro-atherogenic effects, suggesting the role of lipid oxidation underlying UFP-mediated atherosclerosis. |