|  Help  |  About  |  Contact Us

Publication : MyD88 and NOS2 are essential for toll-like receptor 4-mediated survival effect in cardiomyocytes.

First Author  Zhu X Year  2006
Journal  Am J Physiol Heart Circ Physiol Volume  291
Issue  4 Pages  H1900-9
PubMed ID  16648192 Mgi Jnum  J:116319
Mgi Id  MGI:3694025 Doi  10.1152/ajpheart.00112.2006
Citation  Zhu X, et al. (2006) MyD88 and NOS2 are essential for toll-like receptor 4-mediated survival effect in cardiomyocytes. Am J Physiol Heart Circ Physiol 291(4):H1900-9
abstractText  Innate immune system such as Toll-like receptor 4 (TLR4) represents the first line of defense against infection. In addition to its pivotal role in host immunity, recent studies have suggested that TLR4 may play a broader role in mediating tissue inflammation and cell survival in response to noninfectious injury. We and other investigators have reported that cardiac TLR4 signaling is dynamically modulated in ischemic myocardium and that activation of TLR4 confers a survival benefit in the heart and in isolated cardiomyocytes. However, the signaling pathways leading to these effects are not completely understood. Here, we investigate the role of MyD88, an adaptor protein of TLR4 signaling, and inducible nitric oxide synthase (NOS2) in mediating TLR4-induced cardiomyocyte survival in an in vitro model of apoptosis. Serum deprivation induced a significant increase in the number of apoptotic cardiomyocytes as demonstrated by transferase-mediated dUTP nick-end labeling (TUNEL) assay, nuclear morphology, DNA laddering, and DNA-histone ELISA. Lipopolysaccharide (LPS), a TLR4 agonist, activated TLR4 signaling and led to significant reduction in apoptotic cardiomyocytes and improved cellular function of surviving cardiomyocytes with enhanced Ca(2+) transients and cell shortening. We found that both TLR4 and MyD88 are required for the LPS-induced beneficial effects as demonstrated by improved survival and function in wild-type but not in TLR4(-/-) or MyD88(-/-) cardiomyocytes. Moreover, genetic deletion or pharmacological inhibition of NOS2 abolished survival and functional rescue of cardiomyocytes treated with LPS. Taken together, these data suggest that TLR4 protects cardiomyocytes from stress-induced injury through MyD88- and NOS2-dependent mechanisms.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression