|  Help  |  About  |  Contact Us

Publication : Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart.

First Author  Zhao X Year  2007
Journal  Am J Physiol Heart Circ Physiol Volume  292
Issue  3 Pages  H1541-50
PubMed ID  17114245 Mgi Jnum  J:120584
Mgi Id  MGI:3707265 Doi  10.1152/ajpheart.00264.2006
Citation  Zhao X, et al. (2007) Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am J Physiol Heart Circ Physiol 292(3):H1541-50
abstractText  Although it has been shown that endothelial nitric oxide synthase (eNOS)-derived nitric oxide downregulates mitochondrial oxygen consumption during early reperfusion, its effects on inducible NOS (iNOS) induction and myocardial injury during late reperfusion are unknown. Wild-type (WT) and eNOS(-/-) mice were subjected to 30 min of coronary ligation followed by reperfusion. Expression of iNOS mRNA and protein levels and peroxynitrite production were lower in postischemic myocardium of eNOS(-/-) mice than levels in WT mice 48 h postreperfusion. Significantly improved hemodynamics (+/-dP/dt, left ventricular systolic pressure, mean arterial pressure), increased rate pressure product, and reduced myocardial infarct size (18 +/- 2.5% vs. 31 +/- 4.6%) were found 48 h after reperfusion in eNOS(-/-) mice compared with WT mice. Myocardial infarct size was also significantly decreased in WT mice treated with the specific iNOS inhibitor 1400W (20.5 +/- 3.4%) compared with WT mice treated with PBS (33.9 +/- 5.3%). A marked reperfusion-induced hyperoxygenation state was observed by electron paramagnetic resonance oximetry in postischemic myocardium, but Po(2) values were significantly lower from 1 to 72 h in eNOS(-/-) than in WT mice. Cytochrome c-oxidase activity and NADH dehydrogenase activity were significantly decreased in postischemic myocardium in WT and eNOS(-/-) mice compared with baseline control, respectively, and NADH dehydrogenase activity was significantly higher in eNOS(-/-) than in WT mice. Thus deficiency of eNOS exerted a sustained beneficial effect on postischemic myocardium 48 h after reperfusion with preserved mitochondrial function, which appears to be due to decreased iNOS induction and decreased iNOS-derived peroxynitrite in postischemic myocardium.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression