First Author | Kim SY | Year | 2017 |
Journal | Nat Commun | Volume | 8 |
Issue | 1 | Pages | 2247 |
PubMed ID | 29269727 | Mgi Jnum | J:257679 |
Mgi Id | MGI:6112412 | Doi | 10.1038/s41467-017-02325-2 |
Citation | Kim SY, et al. (2017) Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun 8(1):2247 |
abstractText | Reactive oxygen species (ROS) contribute to the development of non-alcoholic fatty liver disease. ROS generation by infiltrating macrophages involves multiple mechanisms, including Toll-like receptor 4 (TLR4)-mediated NADPH oxidase (NOX) activation. Here, we show that palmitate-stimulated CD11b(+)F4/80(low) hepatic infiltrating macrophages, but not CD11b(+)F4/80(high) Kupffer cells, generate ROS via dynamin-mediated endocytosis of TLR4 and NOX2, independently from MyD88 and TRIF. We demonstrate that differently from LPS-mediated dimerization of the TLR4-MD2 complex, palmitate binds a monomeric TLR4-MD2 complex that triggers endocytosis, ROS generation and increases pro-interleukin-1beta expression in macrophages. Palmitate-induced ROS generation in human CD68(low)CD14(high) macrophages is strongly suppressed by inhibition of dynamin. Furthermore, Nox2-deficient mice are protected against high-fat diet-induced hepatic steatosis and insulin resistance. Therefore, endocytosis of TLR4 and NOX2 into macrophages might be a novel therapeutic target for non-alcoholic fatty liver disease. |