|  Help  |  About  |  Contact Us

Publication : Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections.

First Author  Potter SM Year  2005
Journal  Infect Immun Volume  73
Issue  8 Pages  4941-7
PubMed ID  16041008 Mgi Jnum  J:100436
Mgi Id  MGI:3588491 Doi  10.1128/IAI.73.8.4941-4947.2005
Citation  Potter SM, et al. (2005) Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections. Infect Immun 73(8):4941-7
abstractText  Phagocyte-derived reactive oxygen species have been implicated in the clearance of malaria infections. We investigated the progression of five different strains of murine malaria in gp91(phox-/-) mice, which lack a functional NADPH oxidase and thus the ability to produce phagocyte-derived reactive oxygen species. We found that the absence of functional NADPH oxidase in the gene knockout mice had no effect on the parasitemia or total parasite burden in mice infected with either resolving (Plasmodium yoelii and Plasmodium chabaudi K562) or fatal (Plasmodium berghei ANKA, Plasmodium berghei K173 and Plasmodium vinckei vinckei) strains of malaria. This lack of effect was apparent in both primary and secondary infections with P. yoelii and P. chabaudi. There was also no difference in the presentation of clinical or pathological signs between the gp91(phox-/-) or wild-type strains of mice infected with malaria. Progression of P. berghei ANKA and P. berghei K173 infections was unchanged in glutathione peroxidase-1 gene knockout mice compared to their wild-type counterparts. The rates of parasitemia progression in gp91(phox-/-) mice and wild-type mice were not significantly different when they were treated with l-N(G)-methylarginine, an inhibitor of nitric oxide synthase. These results suggest that phagocyte-derived reactive oxygen species are not crucial for the clearance of malaria parasites, at least in murine models.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression